A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time.

نویسندگان

  • Ivan Korotkin
  • Sergey Karabasov
  • Dmitry Nerukh
  • Anton Markesteijn
  • Arturs Scukins
  • Vladimir Farafonov
  • Evgen Pavlov
چکیده

A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale modelling of liquids with molecular specificity

The separation between molecular and mesoscopic length and time scales poses a severe limit to molecular simulations of mesoscale phenomena. We describe a hybrid multiscale computational technique which address this problem by keeping the full molecular nature of the system where it is of interest and coarse-graining it elsewhere. This is made possible by coupling molecular dynamics with a meso...

متن کامل

Multiscale modeling of liquids with molecular specificity.

The separation between molecular and mesoscopic length and time scales poses a severe limit to molecular simulations of mesoscale phenomena. We describe a hybrid multiscale computational technique which addresses this problem by keeping the full molecular nature of the system where it is of interest and coarse graining it elsewhere. This is made possible by coupling molecular dynamics with a me...

متن کامل

Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids.

Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together wi...

متن کامل

Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space.

A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The atomistic molecular dynamics representation is smoothly connected with a statistical continuum hydrodynamics description. The system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the atoms move partly as atom...

متن کامل

Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids.

We present a hybrid protocol designed to couple the dynamics of a nanoscopic region of liquid described at atomistic level with a fluctuating hydrodynamics description of the surrounding liquid. The hybrid technique is based on the exchange of fluxes and it is shown to respect the conservation laws of fluid mechanics. This fact allows us to solve unsteady flows involving shear and sound waves c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2015